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PROGRESS REPORT

The research carried out under the subject contract has been directed

to the analysis of the manner in which vorticity in an incompressible

viscoelastic fluid propagates and decays.

The fluids considered are such that for shearing flows the shear

stress at an instant of time t depends linearly on the history of the

velocity gradient in the fluid for all times up to and including t. Al-

though in the problems considered most of the analysis is carried out for

arbitrary linear dependence of the shear stress on the velocity gradient

history, illustrative numerical results are obtained for the case when the

fluid is Maxwellian and, for purposes of comparison, when it is Newtonian.

In the first problem considered, the fluid fills the region between

two fixed infinite parallel plates and Is initially at rest. It is sub-

jected at time t=O to a uniform pressure gradient, in a direction parallel

to the plates, which is subsequently held constant. ihe time-dependent

development of the final steady-state Poiseuille flow is calculated. It is

found that, in the case when the fluid is Newtonian, at each instant of

time the velocity profile in the fluid varies smoothly from zero at the

.plates to a maximum on the mid-plane. As time proceeds the velocity at each

position between the plates increases monotonically until, asymptotically

at infinite time, the parabolic velocity distribution associated with

steady Poiseuille flow of a Newtonian fluid is attained.

In contrast, when the fluid is Maxwellian quite different behavior is

*0 obtained. Shear layers In which the vorticity is nearly constant are de-

veloped at the walls. These have initially zero thickness. As time proceeds

the thickness of the layers increases, but the vorticity (i.e. the velocity

gradient) in them increases only slightly. At each instant the fluid



between these shear layers moves forward as a rigid body with a velocity

which increases with time. This region becomes narrower and narrower as

time progresses and at its interface with the shear layers there is a

discontinuity in the velocity gradient. When the shear layers reach the

mid-plane, the velocity on the mid-plane exceeds that corresponding to the

final steady state and subsequently oscillates about the latter value, the

amplitude of these oscillations decaying with time until the steady-state

value of the velocity is attained asymptotically.

These results are easily applied to obtain the time-dependent flow

field which results when the initial flow is steady-state plane Poiseuille

flow and the pressure gradient which maintains it is suddenly removed. This

is given by the complement of the time-dependent flow already obtained with

respect to the steady plane Poiseuille flow.

The problem of the propagation and decay of an initially existing

shear layer or vortex sheet in a viscoelastic fluid has been considered

from two points of view. In Ref. 2 a pair of symmetrically disposed shear

layers are assumed to exist in the region between two stationary parallel

plates and at time t=O the forces maintaining them are removed. The equa-

tion of motion governing the resulting time-dependent velocity field is set

up. Its Laplace transform is formed and solved for the Laplace transform of

the velocity, subject to appropriate conditions at the bounding plates. To

this point the analysis is carried out for arbitrary linear dependence of

the shear stress on the history of the velocity gradient. The Laplace

transform of the velocity is inverted to yield the velocity in the particu-

lar cases when the fluid is Maxwellian and, for purposes of comparison,

when it Is Newtonian. In the latter case the shear layers broaden smoothly

in a diffusive manner and simultaneously decay. In contrast, when the fluid

b - .



is Maxwellian, on removal of the forces maintaining the shear layers, there

is a jump in velocity at the boundary of each shear layer. As time

progresses each of these jumps propagates as a pair of wave-fronts with

equal and opposite velocities and decaying amplitudes. Ahead of the fronts

the flow field is unchanged. Since the assumed constitutive equation of the

fluid is linear, the effects of the waves as they pass each other is

additive. When the waves reach the rigid boundaries they are reflected and

the superposition of the resulting flow fields leads to a complicated

decaying oscillatory flow field in the fluid. From the calculatrsj time-

dependent velocity field in the fluid, the velocity gradient field (i.e.

the vorticity field) can be easily obtained.

The time-dependent velocity field in the case when the initial shear

" layers exist in an unbounded space of fluid is derived as a limiting case.

* The predicted behavior is basically similar to that obtained for a bounded

domain with the difference that the waves resulting from reflections at the

boundaries are missing.

The velocity field which results when the initial field consists of a

pair of vortex sheets of equal and opposite vorticities is also obtained as

a limiting case by allowing the width of the initial shear layers to tend

to zero while the velocity gradient in them tends to infinity, the product

of these two quantities remaining constant.

In Ref. 3 a somewhat different approach has been taken to the same

problem in the case when the initial velocity field exists in an unbounded

space of the fluid. Instead of solving the equation of motion for the

velocity field, the differential equation governing the vorticity is first

obtained from the equation of motion by spatial differentiation. The resul-

ting vorticity equation in then solved subject to the condition that the
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vorticity is zero at infinity, again using a Laplace transform method. The

calculations are carried out with the assumption that the initial flow

field is one in which there is a single shear layer, i.e. a single layer or

constant vorticity. From the results obtained, corresponding results for

any number of initial parallel shear layers can be easily obtained by

superposition.

In Ref. 3 explicit illustrative results are obtained for Newto-

nian and Maxwellian fluids. In both cases the results agree with those

obtained in Ref. 2. However, a clearer picture emerges of the behavior

*i of the vorticity than that obtained in the earlier paper. When the

fluid is Maxwellian, immediately after removal of the forces main-

taining the layer of constant vorticity, there is a juop in the vorti-

city to half its initial value at each boundary of the layer. This

.. jump propagates from the boundary in both directions with equal speeds

and decays as is progresses. The result when the initial flow field in

the fluid consists of a vortex sheet, rather than a layer, is derived

as a limiting case.

The method employed in Ref. 3 has also been applied to the calculation

of the time-dependent vorticity distribution which results from an initial

vortex tube, or, as a limiting case, an initial vortex line, in an unboun-

ded space of viscoelastic fluid. Although the results obtained are physi-

cally reasonable, and are consonant with those which might be expected from

the calculations on the propagation and decay of vortex layers and sheets,

.* a certain technical detail in the calculation is open to question. It is

hoped to resolve this matter by using a procedure similar to that employed

in the case of shear layers in Ref. 2.
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